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Abstract: Predictive Maintenance (PdM) is one of the most important applications of advanced data
science in Industry 4.0, aiming to facilitate manufacturing processes. To build PdM models, sufficient
data, such as condition monitoring and maintenance data of the industrial application, are required.
However, collecting maintenance data is complex and challenging as it requires human involvement
and expertise. Due to time constrains, motivating workers to provide comprehensive labeled data is
very challenging, and thus maintenance data are mostly incomplete or even completely missing. In
addition to these aspects, a lot of condition monitoring data-sets exist, but only very few labeled small
maintenance data-sets can be found. Hence, our proposed solution can provide additional labels and
offer new research possibilities for these data-sets. To address this challenge, we introduce MEDEP,
a novel maintenance event detection framework based on the Pruned Exact Linear Time (PELT)
approach, promising a low false-positive (FP) rate and high accuracy results in general. MEDEP
could help to automatically detect performed maintenance events from the deviations in the condition
monitoring data. A heuristic method is proposed as an extension to the PELT approach consisting of
the following two steps: (1) mean threshold for multivariate time series and (2) distribution threshold
analysis based on the complexity-invariant metric. We validate and compare MEDEP on the Microsoft
Azure Predictive Maintenance data-set and data from a real-world use case in the welding industry.
The experimental outcomes of the proposed approach resulted in a superior performance with an FP
rate of around 10% on average and high sensitivity and accuracy results.

Keywords: event detection; welding industry; predictive maintenance; maintenance event detection;
change point detection

1. Introduction

Predictive Maintenance (PdM) is one of the most prominent industrial applications of
data-driven technologies and key to the smart manufacturing concepts, promising many
benefits such as optimized maintenance scheduling, resource optimization, and improved
decision support [1]. PdM models are typically used to predict future failures due to the
wearing out of components and thus provide the opportunity to perform maintenance
proactively. The main reasons for the interest of researchers and industry alike in PdM
in recent years are the relevance and influence of maintenance on production cost and
quality [2], the increased information base due to the availability of cheap and powerful
sensor technology [3], and huge advances in artificial intelligence (AI) [4]. In general,
maintenance costs are an aspect that make up the majority of operating costs and can
vary between 15% and 60% depending on the type of industry [5]. Consequently, PdM
helps to reduce maintenance costs without increasing the risk of downtimes. For instance,
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Han et al. [6] introduced a Remaining Useful Life (RUL)-driven PdM approach that reduced
the maintenance costs by 4% compared to scheduled maintenance.

Building PdM models requires a comprehensive amount of condition monitoring data
describing the operation conditions of the machinery and maintenance data documenting
maintenance events. Usually, the condition monitoring data are collected by sensors embed-
ded in smart manufacturing systems. Yet, the collected maintenance data mainly consist of
feedback from shop-floor workers, and motivating the shop-floor workers to provide this
feedback is a big challenge. This is often neglected due to time constraints. Consequently,
maintenance data are often incomplete or even completely missing [7,8]. One way to tackle
the challenge of missing or incomplete maintenance documentation is to automatically
detect the maintenance events based on their manifestation in monitoring data like time
series collected from sensors in the machines. Anomaly detection approaches are suitable
for these event detection tasks and can be found in many topics within manufacturing
including defect detection [9,10], fault detection [11,12], or maintenance event detection [7].
This research aims to automatically detect performed maintenance actions in monitoring
data to create comprehensive data-sets. Subsequently, the completed maintenance and
condition monitoring data can be used to build suitable PdM models, which in turn will
help to facilitate maintenance scheduling, optimize manufacturing processes, and enhance
product quality. We will show that Change-point detection (CPD) is a promising technique
for maintenance event detection.

Researchers investigated the application of CPD techniques as event detection ap-
proaches. CPD is a common and promising approach to tackle this challenge as they aim to
detect abrupt changes in time series [13]. The Pruned Exact Linear Time (PELT) in particular
is a state-of-the-art offline CPD method that provides accurate event detection outcomes
as a result of its binary segmentation and the lower computational complexity it offers
compared to exact search methods [14]. The main advantage of PELT is its use of pruning
to reduce computational costs without affecting the accuracy of the segmentation results.
However, a drawback of event detection approaches in general, and CPD in particular, is
their tendency to predict a large number of False-Positive (FP) events [15–17]. FP events add
additional noise in case the list of events is used as an input for other algorithms. Moreover,
a large number of FP events can hinder the application of such models in real scenarios,
thus decreasing the usefulness of these approaches [17]. To address this challenge, we
propose MEDEP as a novel framework based on PELT for multivariate time series. The
experimental results are evaluated using two different manufacturing use cases. As a result,
MEDEP promises high accuracy event detection results at a low FP rate. The provided low
FP rate is a crucial aspect when aiming to integrate these approaches in real-world use
cases, and promises increased potential for higher acceptance and trust in these approaches,
and in turn a high application rate. We consider this an important contribution to the field
of detecting maintenance interventions in manufacturing. Note that the focus of this work
is only on detecting maintenance intervention from sensor data to create comprehensive
data-sets, thus providing a foundation for PdM research in the future; however, the PdM is
beyond the scope of this paper.

The main contributions of this work are summarized by the following two aspects:

1. The design of MEDEP as a novel framework based on PELT to detect maintenance
events within sensor data represented as multivariate time series. The PELT approach
is extended with a post-filtering heuristic method that consists of two consecutive
steps of mean ratio and distribution threshold filtering that validate suspected main-
tenance events, ensuring a high accuracy rate at a very low FP rate.

2. A novel complexity-estimate-based metric [18] for time series is proposed to extract
relevant knowledge concerning maintenance event interventions. The metric helps to
select the most informative sensors concerning the performed maintenance actions by
searching for the sensor with the largest difference of the complexity estimate before
and after the performed maintenance action. This is based on the hypothesis that
the sensor data before performing the maintenance action will have more and larger
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peaks and valleys due to the worn-out component. This metric is used for feature
selection for PELT and to select the appropriate feature for the distribution threshold
analysis within the post-filtering method.

2. Theoretical Background

In the age of smart industrial diagnostics, multiple sensors are embedded within
machines to collect condition monitoring data [9]. This provides the foundation to develop
data-driven models to understand, support, and automate manufacturing processes. De-
spite the huge advances of PdM, many companies struggle to build suitable PdM models.
The major reason for this struggle and also the major barrier of introducing PdM in the
industry is the lack of suitable data. In particular, the process of collecting maintenance
data is challenging as it requires human feedback to document performed maintenance
activities. Usually, the shop-floor workers focus on the execution of maintenance actions so
that manufacturing continues as soon as possible, and the documentation of their works
is only a secondary concern. In many cases, the documentation of maintenance actions is
performed retrospectively; thus, a lot of details are not included.

Sensor data are typically more complete than the feedback provided by humans. Based
on this observation, several researchers proposed technical approaches for event detection
to overcome the missing human feedback as a major barrier of introducing PdM. The
collected sensor data can serve the purpose of anomaly detection in general, defect detec-
tion [9,10,19], failure detection [11,12], or maintenance events detection [7] in particular.
Event detection for specific components in large machines is challenging due to the high de-
gree of complexity inherent to the large number of components and environmental factors
influencing the health state of the machines and their components [1]. Data-driven models
are seen as a promising solution to tackle these challenges. Supervised, semi-supervised,
and unsupervised machine learning methods have found their applications for anomaly
detection in manufacturing.

Supervised approaches are widely applied and usually provide good results. Typical
application examples of supervised learning in manufacturing can be found in [9,20,21].
These approaches require large labeled data-sets for their training where the condition
monitoring data are annotated with known maintenance events indicating the true health
conditions of the machine. However, such annotations are often incomplete and not avail-
able in real-world use cases [22,23]. Semi-supervised approaches are a promising way to
overcome the challenge of incompletely annotated data-sets [24]. The main characteristic
of semi-supervised approaches is the repeated training with a labeled subset of all mainte-
nance events to continuously improve detection or predictive results. For semi-supervised
modeling, at least a partly annotated training data-set representing the healthy state of
machines and components has to be available. However, this is hard to assure as machines
continuously degrade or even crash, and such crashes might affect the condition monitoring
system and, therefore, the collected data [25].

Unsupervised approaches can overcome these issues since they learn solely from con-
dition monitoring data and neither require labeled nor only healthy system data [26–28].
The focus in this research field is targeted towards identifying abnormal patterns that can
be exploited for fault detection or event detection knowledge. However, their application
in maintenance event detection is less explored. The knowledge acquired in fault and
defect event detection models is mostly used as input for maintenance decision making.
Nevertheless, anomaly detection for maintenance event detection has been receiving more
attention recently [7,8,29]. In this context, research mostly focuses on the detection of
abnormal patterns using sensor data complemented by a human-in-the-loop setup to
validate the detection results. For instance, Moens et al. [7] introduce an interactive dash-
board for event detection in sensor data. This approach is based on a matrix profile as its
motif discovery technique and requires human feedback or intervention to label correct
maintenance events. This work showed that maintenance events could be detected and
correctly labeled with limited feedback from the human expert. De Benedetti et al. [12]
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proposed an anomaly detection approach detecting anomalies in photovoltaic systems
based on artificial neural networks to generate predictive maintenance alerts. Furthermore,
Theodoropoulos et al. [30] evaluated Deep Learning-based approaches in a maritime in-
dustry sustainability. The work [30] showed that 1D-CNN models can successfully deduce
important properties, i.e., component decay and status, in different time horizons. In
contrast to benchmark ML approaches, the proposed methodology showed efficiency in
the detection of defect patterns for small degradations. Susto et al. [31] compared state-
of-the-art anomaly detection approaches using different industrial use cases. As a result,
Local Outlier Factor (LOF) [32] outperforms other approaches in terms of outlier and
event detections.

However, these approaches are not straightforward and require human feedback [7]
to validate the detected events that lead to extra effort from shop-floor workers. A common
challenge of anomaly detection techniques is the tendency to detect a large number of false
positives (FPs) [15–17]. The tuning of hyper-parameters in these models helps to reduce the
FP rate, but usually at the expense of the sensitivity rate, reducing the performance in the
detection of real events [15,16]. The detection of maintenance actions requires high accuracy
results and, therefore, also low FP rate. High FP rates hinder the application of such models
in real-world use cases, thus decreasing the usefulness of event detection approaches [17].
Therefore, MEDEP, presented in this work, is designed as a novel event detection approach
that tackles all the aforementioned challenges in the context of maintenance event detection.

We use PELT [14] as the CPD component in MEDEP to achieve high detection accuracy
results, especially in terms of the sensitivity rate, i.e., the detection of true events. PELT is
an offline CPD approach achieving accurate results due to binary segmentation while at the
same time posing less computational cost as exact search methods. The main advantage
of PELT is that it uses pruning to reduce the computational costs while not affecting
the accuracy of the segmentation results [14]. We propose MEDEP as a fully automated
framework that detects maintenance events with minimal human input. MEDEP takes
advantage of unsupervised learning techniques, in particular CPD, which is at its core.
Furthermore, MEDEP extracts additional knowledge from a subset of labeled data used
mainly for the initial training of hyper-parameters. A key feature of MEDEP is that it needs
only a very small set of labeled training data, thus minimizing the need for manually labeled
training data. Finally, MEDEP tackles the challenge of a high FP rate with a post-filtering
approach. This approach is introduced in Section 4.3.

3. Problem Definition and Data Description

MEDEP is evaluated on two different data-sets; the first one is a comprehensive public
data-set published by Microsoft [33] and called Microsoft Azure Predictive Maintenance. It
is designed for PdM application and was collected in the semiconductor industry [34]. The
second data-set was collected by a major Austrian welding equipment manufacturer. The
Microsoft Azure Predictive Maintenance will be referred to hereafter as Use Case 1, and the
work on the data-set collected by the welding manufacturer is referred to as Use Case 2.

3.1. Use Case 1—Microsoft Azure Predictive Maintenance Data-Set

Use Case 1 benefits from the comprehensiveness of the Microsoft Azure Predictive
Maintenance data-set, since this data-set is complete in terms of sensor data, error log, and
maintenance data. Therefore, the evaluation numbers achieved in Use Case 1 are thought to
be of high quality since there are no unlabeled maintenance events expected in the data-set.
The data-set is suitable for event detection and consists of machine conditions and usage
data formed from telemetry records, error records, and maintenance logs representing
the failure data. Especially, the completeness of the maintenance logs elevates this data-
set over the data-sets collected in other applications where the maintenance logs are
potentially incomplete.

Machine conditions and usage time series data consist of hourly averages of voltage,
rotation, pressure, and vibration collected from 100 machines in the year 2015. In total, the
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data-set contains 8761 records. Each record consists of the aforementioned four values, a
timestamp, and a machine identifier, as can be seen in Table 1. The failure history of four
components named comp1, comp2, comp3, and comp4 contains 761 records describing
around eight failures per machine in the year 2015. Failures lead to crashes or machine
shut down, thus forcing the replacement of the failed components. Each failure record
contains information about the failed component, the timestamp, and the affected machine.
Furthermore, the error log contains a list of 3919 errors encountered by the machines while
in operating conditions. An error’s presence does not cause a crash or force the machine
to shut down; therefore, errors are not considered as a failure. Moreover, the timestamps
of errors are rounded to the nearest hour to fit the machine conditions and usage data
collected hourly. There are five types of errors numbered from “error1” to “error5”. Each
recorded error consists of the encountered error type, machine, and timestamp. Further
information regarding the components and errors was removed during the anonymization
by the data-set’s publisher and is therefore not available.

Table 1. An example of telemetry data in Use Case 1 with information about time (“Datetime”),
machine (“machineID”), and the sensors data consisting of voltage (“Volt”), rotation (“Rotate”),
pressure (“Pressure”) and vibration (“Vibration”).

Datetime MachineID Volt Rotate Pressure Vibration

01.01.2015
06:00 1 176.22 418.5 113.08 45.09

01.01.2015
07:00 1 162.88 402.75 95.46 43.41

01.01.2015
08:00 1 170.99 527.35 75.24 34.18

3.2. Use Case 2-Welding Industry

Use Case 2 considers an industrial welding application in integrated manufacturing
lines. The objective of Use Case 2 is to detect maintenance events from sensor data. There
are components of a modern industrial welding machine that are not replaced based on
a preventive scheme due to the high cost, complex replacement, and rare failure, but
are replaced only when problems occur. Nevertheless, many of these components are
subject to wear, and their replacement is a complex maintenance activity conducted by
trained shop-floor workers in a couple of minutes. This forces machine downtime, thus
strongly affecting the performance of the manufacturing process. A prediction of when
the components need to be replaced would be highly desirable to schedule component
replacements in advance. Since welding process data and machine condition data are
automatically collected and provided, the objective of Use Case 2 is to detect conducted
component maintenance actions from such data.

The data in Use Case 2 were collected in a welding process involving eight different
machines in the time from June 2020 to June 2021. However, for the evaluation of the
MEDEP, only one machine was used due to it offering the highest data quality. Statistical
features including the mean, variance, standard deviation (std), kurtosis, and skewness of
sensor data are estimated based on the welded parts over time. Furthermore, errors are
counted over the welded parts. Additionally, the duration of welded parts and component
logs are used as features for the model. However, due to the tight organization of the
manufacturing process, only a subset of the maintenance actions are documented directly
after a maintenance action is conducted. Domain experts investigated the collected welding
and condition monitoring data to retrospectively complete the list of maintenance actions.
As a result, nine maintenance events were described within the machine that is used
to evaluate the MEDEP. This retrospectively defined list is used in this evaluation as
ground truth.
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4. Maintenance Event Detection Framework

Figure 1 shows the proposed MEDEP setup consisting of feature extraction and selec-
tion, hyper-parameter tuning to identify the global optimum, candidate event detection
based on the PELT, and candidate events validation based on a post-filtering heuristic
approach. The post-filtering approach consists of two consecutive steps of candidate events
validation based on mean ratio and candidate event validation based on distribution analy-
sis. The post-filtering is responsible for removing FP events, thus assuring high accuracy
and high sensitivity, resulting in a high detection performance of the real maintenance
events. Based on background knowledge and the assumption that the wear of differ-
ent components shows different deviations in sensor data, the framework is trained and
evaluated for each component separately.

Figure 1. Maintenance event detection framework. Consisting of the following steps: Feature
extraction and feature selection based on complexity estimate (CE), hyper-parameter tuning using
partly maintenance logs, initial event detection based on the PELT, and post-filtering (mean and
distribution analysis) to reduce FP rate.

4.1. Feature Extraction and Selection

The pre-processing is split into feature engineering and feature selection. The feature
engineering defines features based on the available input data so that these features can be
inputed in PELT. This starts with aggregating sensor data to exclude noise and highlight only
relevant changes and was conducted for every use case separately. In Use Case 1, the feature
engineering is based on the previous works by Microsoft [33], Cardoso and Ferreira [35].
The telemetry data of voltage, vibration, rotation, and pressure is aggregated into 3-h blocks
to catch short-term knowledge and in 24 h blocks to catch long-term knowledge. Any errors
occurring during the 3 h blocks are counted, and the error count is used as a feature. In Use
Case 2, the sensor data are aggregated per welded part. This was achieved by calculating
the statistical features mean, standard deviation, variance, kurtosis, and skewness of the
sensor data collected during the welding of a single part. Domain experts have suggested
these features. The number of errors during the time it takes to weld the part was also used
as a feature, analogous to Use Case 1. The features are normalized by subtracting the mean
and scaling to unit variance in both use cases to assure similar characteristics for similar
events and to exclude the magnitude effect.

The feature selection is based on the complexity estimate (CE) of the complexity-
invariant distance for time series as defined by Batista et al. [18]. The complexity esti-
mate CE(X) of a univariate time series X = [x1, x2, . . . , xN ] with a length of N is defined
by Batista et al. [18] (Equation (1)) as

CE(X) =

√√√√N−1

∑
i=1

(xi − xi+1)2. (1)
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For the feature selection, the CE(X) is evaluated before and after a known mainte-
nance event for all input feature candidates. The ratio

ce_ratio =
CE(Xbe f ore)

CE(Xa f ter)
(2)

is calculated for each known maintenance event. Then, features with a high ce_ratio are
selected. The best subset of features is selected based on the backward elimination where
the features that did not show significant drops in ce_ratio are eliminated. The selected
features in Use Case 1 and Use Case 2 are shown in Table 2.

Table 2. Selected features for Use Case 1 and 2.

Use Case Component Features

1 Comp1 volt_24h_mean, error1
1 Comp2 rotate_24h_mean, error2, error3
1 Comp3 pressure_24h_mean, error4
1 Comp4 vibration_24h_mean, error5
2 Comp1 ErrorCount, Kurtosis, Mean, Variance, STD

4.2. Hyper-Parameter Tuning

The data-set is split into train and test data. In Use Case 1, this split is conducted using
a machine-based approach, meaning that the data of 80% of the machines are selected for
training, and data from the other 20% of machines are used as test data. The assignment
of machines to either the training or the test data-set is carried out randomly. This split
on a per-machine basis is carried out to evaluate the transferability of the model over
different machines. However, in Use Case 2, only one machine is used to evaluate the
MEDEP; therefore, a time-based split is conducted, where 60% are train and 40% test
data. GridSearchCV is used to search for the optimum of all hyper-parameters, namely
penalty and cost function as a parameter of PELT approach, window size, mean ratio,
and distribution threshold required for post-filtering analysis. The complete list of tuned
hyper-parameters concerning Use Cases 1 and 2 is shown in Table 3. The selection of
the best hyper-parameters is conducted based on the highest sensitivity and lowest FP
rate, where the sensitivity is prioritized. In other words, this metric aims to find the
optimal hyper-parameters that deliver the highest sensitivity first, and in case that multiple
parameter sets deliver similar sensitivity results, the lowest FP rate is used to select the
optimal hyper-parameter set.

4.3. Maintenance Event Detection

The initial event detection is conducted with PELT due to its high accuracy and low
computational costs. The L2 regularization cost function is used, and the penalty parameter
is optimized separately for each component in both use cases, as described in Section 4.2.
While a high sensitivity was achieved, still an also high FP rate persisted. Therefore, the
post-filtering steps are designed to mitigate this issue.

The post-filtering is carried out to reduce the number of FPs in the result of PELT. The
post-filtering methods are motivated by the fact that the most informative sensors con-
cerning maintenance events show larger variability and higher absolute values before the
performed maintenance event due to worn-out components. This can be seen in the more
significant peaks and valleys before the maintenance event, as depicted in Figure 2. Note
that the example shown in Figure 2 is a maintenance intervention that can be demonstrated
visually and could help to understand the foundation of the proposed approach; however,
not every intervention can be shown visually in such an exemplary way. The sensor in
Figure 2 shows lower variability, and the expected sensors values also drop on average after
the component is replaced. Therefore, the ce_ratio as defined in Equation (2) is employed
to capture variability changes and the ratio of the sensor’s mean value before and after a
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potential maintenance event. The acceptance thresholds of ce_ratio and the mean ratio for
real maintenance events are tuned using known maintenance events in the training data
and are an integral part of the post-filtering.

Figure 2. An example of performed maintenance event. The maintenance intervention is indicated
by the dashed vertical line in green. The sensor yields higher absolute values and higher variability
before the maintenance compared to the sensor values after the maintenance event is performed.

The post-filtering includes two consecutive steps. The first step is the calculation
of the ratio of the sensor’s mean value before and after a potential maintenance event
for all features. A majority vote on the calculated mean ratios decides if the potential
maintenance event is filtered out or not. The second step is centered around a distribution
threshold applied to the most informative feature to reduce the FP rate further. This begins
by selecting the most informative feature based on the sum of ce_ratio and ci_ratio as
given in Equations (2) and (3), respectively. CI in Equation (3) is the confidence interval
range of CE(X). ci_ratio is calculated as a ratio of CI before and after the performed
maintenance events. Once the most informative feature is selected, the threshold separating
the distribution of the real maintenance events and the distribution of the FP maintenance
events is defined. The threshold is defined using the kernel density estimate [36] and
the root finding algorithm [37]. The central root between the means of two distributions
is selected as the intersection point and consequently as the deciding threshold. These
parameters are entirely tuned using only training data. Once it is trained, the post-filtering
is applied to every potential maintenance event detected by PELT.

ci_ratio =
CI(Xbe f ore)

CI(Xa f ter)
(3)

Figure 3 depicts the process of distribution threshold determination for comp2 in Use
Case 1 by selecting the most informative feature “rotate-24h” and the distribution threshold
of 405 to distinguish between FP events and real events. The bar chart on the top depicts
the CE(X) metric for the features in green and Confidence Interval (CI) as the small back
bars on top. The CI is estimated by bootstrapping [38]. The results are visualized using a
bar chart with a confidence interval. The results are shown for each feature before and after
a known maintenance event. The signal “rotate-24h” representing the averaged value of the
“rotate” signal in 24 h is ranked as the most relevant signal based on the highest value of
rank = ce_ratio + ci_ratio. The selection of “rotate-24h” is due to the fact at both its CE(X)
and CI decrease, indicating that the signal is fluctuating less after the maintenance action.
Hence, the effects of the performed maintenance action manifest themselves in this signal,
and thus this signal ranks as the most relevant signal for distribution threshold analysis.
Finally, the intersection point between the distributions of FP and real maintenance events
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is defined. Figure 3 shows the approach for comp2, but the approach is applied for every
component in both use cases.

Figure 3. This example shows comp2 of Use Case 1. The distribution analysis is split into
three consecutive steps of analysis of the feature ratio before and after the known maintenance
events based on ce_ratio and ci_ratio, selection of the most informative feature, and definition of
distribution threshold.
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Table 3. Trained hyper-parameters.

Use Case Component Parameter Value Min Max

1 Comp1

penalty 50 10 1000
mean ratio 1.01 1.001 2

dist threshold volt_24h 183 - -
window_size 12 6 48

1 Comp2

penalty 100 10 1000
mean ratio 2.0 1.001 2

dist threshold rotate_24h 405 - -
window_size 12 6 48

1 Comp3

penalty 45 10 1000
mean ratio 1.1 1.001 2

dist threshold pressure_24h 114.75 - -
window_size 12 6 48

1 Comp4

penalty 50 10 1000
mean ratio 1.001 1.001 2

dist threshold vibration_24h 46.99 - -
window_size 12 6 48

2 Comp1

penalty 100 10 1000
mean ratio 1.5 1.001 2

dist threshold variance 0.109 - -
window_size 50 5 150

5. Experimental Results of Use Case 1

The evaluation for Use Case 1 compares performance indicators of four setups show-
ing the benefits that post-filtering in MEDEP poses over unfiltered PELT. The baseline
for the comparison conducted here are event detection results using only PELT and no
post-filtering. Then, there are the two intermediate variants of using PELT and only the dis-
tribution threshold as post-filtering or using PELT and only the mean ratio as post-filtering.
The final variant is PELT with the consecutive post-filtering by the mean ratio and the
distribution threshold, creating the full pipeline of MEDEP. In addition to PELT, LOF as
a promising approach applied for anomaly detection in manufacturing showed superior
results [31]; therefore, it is included in the evaluation as a point of reference. The evaluation
scores include sensitivity, FP rate, and accuracy. The sensitivity score indicates the true
positive detection, the FP rate highlights the remaining share of FP in the results, and the
accuracy is a combined measure showing the number of true detected events divided by
the number of all detected events. We present the detection results for each component
separately to outline the results clearly.

The results of the four evaluations of each component are depicted in Table 4 and
show that MEDEP outperforms the cases with no or only one post-filtering. Therefore,
MEDEP improves the accuracy and consequently reduces the FP rate without major influ-
ences on the sensitivity rate. These results are promising for applications where a low FP
rate is required in order to gain trust and acceptance when integrating this approach in
manufacturing environments. Therefore, the extended approach outperforms the PELT by
keeping its original high sensitivity while reducing the FP rate at the same time.
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Table 4. Maintenance event detection results in Use Case 1. The best results for each metric are
highlighted in bold.

Component Algorithm Sensitivity FP Rate Accuracy Distribution
Threshold Mean Ratio

Comp1

MEDEP 0.975 0.948 0.051 False False
MEDEP 0.975 0.768 0.231 True False
MEDEP 0.878 0.700 0.300 False True
MEDEP 0.878 0.052 0.947 True True

LOF 0.531 0.545 0.469 - -

Comp2

MEDEP 0.943 0.936 0.063 False False
MEDEP 0.943 0.734 0.265 True False
MEDEP 0.943 0.572 0.472 False True
MEDEP 0.943 0.122 0.877 True True

LOF 0.467 0.527 0.473 - -

Comp3

MEDEP 0.900 0.963 0.037 False False
MEDEP 0.900 0.858 0.142 True False
MEDEP 0.850 0.767 0.232 False True
MEDEP 0.850 0.105 0.895 True True

LOF 0.522 0.544 0.456 - -

Comp4

MEDEP 1.000 0.908 0.092 False False
MEDEP 1.000 0.593 0.407 True False
MEDEP 0.945 0.313 0.687 False True
MEDEP 0.945 0.054 0.946 True True

LOF 0.407 0.461 0.539 - -

MEDEP outperforms PELT and LOF in terms of FP rate when aiming for maintenance
events detection. PELT and LOF introduce a high number of FPs since they catche any type
of anomalies present in sensor data. A post-filtering approach similar to MEDEP could
help to reduce the number of FPs also of LOF. In general, MEDEP clearly introduces fewer
FP events, and this is an important aspect when aiming to increase the acceptance rate of
ML approaches for maintenance event detection in real-world use cases.

6. Experimental Results of Use Case 2

This use case centers around welding and condition monitoring data collected in an
industrial welding process. In this use case, we evaluate the MEDEP on the data from a
single machine. The results of MEDEP are promising in terms of sensitivity.

Table 5 shows the results for a single machine and showing a drop in FP rate of
20% when post-filtering is applied. Again, the four setups are presented with no, partial,
and full post-filtering. The results show that the proposed framework can detect already
documented events with a high sensitivity rate. Overall, the results are promising in the
context of maintenance detection, but only a small number of the maintenance events of
component 1 were available for the evaluation. Therefore, we have to take this fact into
consideration while interpreting the results. In general, the results are promising, and due
to the good results in Use Case 1, this approach is sound for the detection of maintenance
events. Still, the FP reduction is much smaller than in Use Case 1. The discussion of these
results with domain experts generated the hypothesis that the undocumented maintenance
events, such as minor cleanings and adjustments, show up here as FP events.

Table 5. MEDEP maintenance event detection results for one component of a single industrial
welding machine.

Component Algorithm Sensitivity FP Accuracy Distribution
Threshold Mean Ratio

Comp1

MEDEP 0.750 0.900 0.100 False False
MEDEP 0.750 0.880 0.012 True False
MEDEP 0.750 0.750 0.250 False True
MEDEP 0.750 0.700 0.300 True True

LOF 0.500 0.980 0.010 - -
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7. Discussion of Results and Outlook

Data-driven ML approaches can improve the detection of maintenance events or help
with the labeling of data for PdM modeling [7,8,29]. Previous studies have focused mainly
on improving labeling in the context of defect detection [9,10] and failure detection [11,12].
However, maintenance event detection has not been extensively explored so far. Moreover,
the core focus of existing research was the detection of potential failures manifested in a
signal rather than the retrospective detection of maintenance events. Additionally, none
of the current approaches consider PELT in the context of maintenance events detection
to help complete existing maintenance data-sets. This work designed an extended PELT
approach providing fast and accurate maintenance event detection.

7.1. Theoretical Contributions

The high quality of the automatically detected maintenance events allows them to
be used as inputs for other ML algorithms building PdM models. Our paper has two
main contributions. Firstly, we demonstrated how the proposed framework called MEDEP
addresses the challenge of having limited maintenance data, thus helping to automatically
detect maintenance events. Secondly, we showed how the complexity estimate CE(X)
extracts valuable knowledge concerning maintenance events, thus helping to identify and
select relevant features for event detection.

Regarding the first contribution, the proposed MEDEP framework showed that main-
tenance events could be detected in sensor data. The high FP is a common challenge in the
literature concerning event detection [15–17]. This challenge can hinder the application
of event detection models in real-world use cases [17]. MEDEP shows high accuracy and
low FP rate, giving it the foundations to be applied to maintenance event detection in a
real-world use case. In general, our proposed solution reduces the average FP rate from
90% of a pure PELT approach to 10%, which is more applicable in real world scenarios. A
low FP rate is crucial for the integration in real-world use cases where MEDEP increases
the number of annotated maintenance events. Susto et al. [31] compared state-of-the-art
anomaly detection approaches using different industrial use cases, where LOF showed
superior results. However, our evaluation showed that MEDEP overcomes LOF in terms of
FP rate. One aspect that contributed to these results is that MEDEP is specialized anomaly
detection in maintenance events detection, i.e., interventions. LOF is a general anomaly
detection approach and aims to catch any type of anomaly, thus leading to a higher FP rate.
However, the foundation provided by MEDEP by introducing the post-filtering approach
idea could be easily merged with any anomaly detection approach, e.g., LOF, to help reduce
the FP rate. This can be considered as a promising direction for future research.

The second contribution is the application of the complexity estimate CE(X) to select
the most informative features for the maintenance event detection. The contribution of this
metric is twofold. Firstly, the metric is used for decision-making on multivariate feature
selection. Secondly, this metric helped to select the most relevant feature in the post-filtering
process. Employment of CE(X) to extract information concerning performed maintenance
events is a novel application.

7.2. Limitations and Future Research Direction

MEDEP is applicable in cases where a lot of sensor data are collected, but only partly
maintenance data are provided. However, MEDEP provides a high potential to be inte-
grated as a supportive tool within a real-world use case. In this case, the MEDEP will
detect potential candidate events from sensor data and the completeness of maintenance
data will increase, thus paving the way for modeling PdM approaches [39]. This remains
as an avenue for future work. Moreover, MEDEP is evaluated only on the detection of
maintenance interventions. To generalize MEDEP further, a comparison and evaluation
of the MEDEP against state-of-the-art anomaly detection approaches is required. Further-
more, the Multi-Component System (MCS) view of modeling interdependencies between
components has been promoted as a promising approach to increase predictive results and
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decision-making performance in the context of PdM [1,40]. However, the main challenge
highlighted in the literature is the lack of sufficient maintenance data to model the MCS
view [1,9,40]. Especially, the deep component level required to build the MCS view in-
creases the amount of required labeled data. MEDEP can help to tackle this challenge by
increasing the completeness of maintenance event data. In this regard, we strongly believe
that this will encourage researchers to further explore MEDEP.

MEDEP is based on PELT as an offline CPD approach focused on signal segmentation,
promising a low computation time and high accuracy in the detection of change points. This
approach showed superior results in similar case studies where the signal data are available.
However, the integration of MEDEP in real-world use cases is planned as future work. In
this case, other approaches intended primarily for real-time event detection, such as the
online CDP approaches, can be extensively analyzed and benchmarked against MEDEP.
MEDEP showed superior results in Use Case 1 in the ability to transfer the knowledge over
the machines, i.e., training and testing in different machines. However, the transfer over
machines in Use Case 2 is not evaluated as a result of considerably varying patterns of the
same maintenance type over different machines. One promising approach to tackle this
challenge is the adaptive normalization of the data for non-stationary heteroscedastic time
series [41]. In the future, we plan to explore more in this direction.

8. Conclusions

In this research work, we exemplify how to identify maintenance events from sensor
data. We proposed MEDEP as a novel maintenance event detection framework providing a
high accuracy at a low FP rate. MEDEP is evaluated in two different industrial Use Cases,
namely the Microsoft Azure Predictive Maintenance data-set and data from a real-world
use case from the welding industry. Moreover, a metric based on a complexity estimate
for time series is proposed for feature selection and distribution analysis in the context of
maintenance event detection. MEDEP showed that it could reach a superior accuracy and
low FP rate results, thus promising a high acceptance and application rate. In contrast to
the benchmark ML anomaly detection approaches, MEDEP showed superior results with
detection maintenance events, i.e., interventions.

In the future, we plan to investigate anomaly detection approaches such as online CPD
aiming for real-time maintenance event detection. Furthermore, the completeness of data
as an outcome of the application of MEDEP will be used to build PdM models. In particular,
we aim to explore the MCS view and the interdependencies between components in the
future. Finally, we aim to integrate and evaluate this approach within a real-world use case.
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